Title of article :
Normal subgroups generated by a single pure element in quaternion algebras
Author/Authors :
Louis Rowen، نويسنده , , Yoav Segev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
130
To page :
145
Abstract :
Let D be a quaternion division algebra whose center is an arbitrary infinite field K of characteristic ≠2, and let e D be a pure quaternion. Hence, by definition, e D K and e2 K. We show that if the characteristic of K is >2, then D×/ eD× is abelian-by-nilpotent-by-abelian. Note that by [A.S. Rapinchuk, L. Rowen, Y. Segev, Nonabelian free subgroups in homomorphic images of valued quaternion division algebras, Proc. Amer. Math. Soc., in press] this result is false in characteristic zero. As a consequence we show that the Whitehead group W(G,k), where G is an absolutely simple simply connected algebraic group of type defined over a field k of odd characteristic and of k-rank 1, is abelian-by-nilpotent-by-abelian.
Keywords :
Pure quaternion , Whitehead group , Quaternion division algebra
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697741
Link To Document :
بازگشت