Title of article :
Structure theorems of H4-Azumaya algebras
Author/Authors :
Aaron Armour، نويسنده , , Hui-Xiang Chen، نويسنده , , Yinhuo Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
34
From page :
360
To page :
393
Abstract :
Let k be a field and H4 be Sweedlerʹs 4-dimensional algebra over k. It is well known that H4 has a family of triangular structures Rt indexed by the ground field k and each triangular structure Rt makes the H4-module category a braided monoidal category, denoted . In this paper, we study the Azumaya algebras in the categories . We obtain the structure theorems for Azumaya algebras in each braided monoidal category , t k. Utilizing the structure theorems we obtain a scalar invariant for each Azumaya algebra in the aforementioned categories.
Keywords :
Module algebra , Brauer group , Azumaya algebra
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697749
Link To Document :
بازگشت