Title of article :
Comparing Lusztigʹs algebras and Hall algebras at v=−1
Author/Authors :
Steffen Koenig، نويسنده , , Libin Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
775
To page :
788
Abstract :
There are two abstract approaches to (positive parts of) quantized enveloping algebras of Kac–Moody algebras: Lusztigʹs axiomatic approach leading to non-degenerate objects in Green categories, and Ringelʹs approach via Hall algebras. Generically and for certain values of the quantum parameter these two approaches produce isomorphic objects, as shown by Green. This note studies a case where these objects turn out to be different. For v=−1, the algebra arising from Lusztigʹs approach is shown to be super-commutative for any datum (I, ), whereas Hall algebras are super-commutative only in a trivial case.
Keywords :
Cyclic symmetry , Super-commutativity , quantum group , Hall algebra , Green category , Twisted bialgebra , Green polynomial
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697770
Link To Document :
بازگشت