Title of article :
Group rings in which every element is uniquely the sum of a unit and an idempotent
Author/Authors :
J. Chen، نويسنده , , W.K. Nicholson، نويسنده , , Y. Zhou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
8
From page :
453
To page :
460
Abstract :
A ring R is called clean if every element is the sum of an idempotent and a unit, and R is called uniquely clean if this representation is unique. These rings are related to the boolean rings: R is uniquely clean if and only if R/J(R) is boolean, idempotents lift modulo J(R), and idempotents in R are central. It is shown that if the group ring RG is uniquely clean then R is uniquely clean and G is a 2-group. The converse holds if G is locally finite (in particular if G is solvable).
Keywords :
Clean rings , Group rings , Boolean rings , Idempotents
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697823
Link To Document :
بازگشت