Title of article :
Structure of Weyl type Lie algebras
Author/Authors :
Rencai Lu ، نويسنده , , Kaiming Zhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
552
To page :
565
Abstract :
Let A be a unital commutative associative algebra over a field F of characteristic zero, D a commutative subalgebra of DerF(A) (all derivations of the associative algebra A). We assume that A is D-simple and denote the center of the Weyl type algebra A[D] by F1 which is an extension field of F when A[D] is simple. In this paper, it is proved that the simple associative algebras A[D] are noncommutative domains, and then the derivations of the simple associative algebras A[D] and of the associated Lie algebras A[D]L are completely determined when dimF1F1D<∞.
Keywords :
Derivations , Weyl type Lie algebras
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697830
Link To Document :
بازگشت