Title of article :
Semiprime CS group algebra of polycyclic-by-finite group without domains as summands is hereditary
Author/Authors :
Adel N. Alahmadi، نويسنده , , Dharmendra Kumar, S.K. Jain، نويسنده , , J.B. Srivastava، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
6
From page :
541
To page :
546
Abstract :
Behn showed that if K[G] is a prime group algebra with G polycyclic-by-finite, then K[G] is a CS-ring if and only if K[G] is a pp-ring if and only if G is torsion-free or G D∞ and char(K)≠2. As a consequence, such a group algebra K[G] is hereditary excepting possibly when K[G] is a domain. In this paper we show that if K[G] is a semiprime group algebra of polycyclic-by-finite group G and if K[G] has no direct summands that are domains, then K[G] is a CS-ring if and only if K[G] is hereditary if and only if G/Δ+(G) D∞ and char(K)≠2. Precise structure of a semiprime CS group algebra K[G] of polycyclic-by-finite group G, when K is algebraically closed, is also provided
Keywords :
Group algebra , Twisted group algebra , CS-ring , hereditary ring
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
697871
Link To Document :
بازگشت