Title of article :
Generalized Fitting modules and rings
Author/Authors :
A. Hmaimou، نويسنده , , A. Kaidi، نويسنده , , E. S?nchez Campos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
16
From page :
199
To page :
214
Abstract :
An R-module M is called strongly Hopfian (respectively strongly co-Hopfian) if for every endomorphism f of M the chain Kerf Kerf2 (respectively Imf Imf2 ) stabilizes. The class of strongly Hopfian (respectively co-Hopfian) modules lies properly between the class of Noetherian (respectively Artinian) and the class of Hopfian (respectively co-Hopfian) modules. For a quasi-projective (respectively quasi-injective) module, M, if M is strongly co-Hopfian (respectively strongly Hopfian) then M is strongly Hopfian (respectively strongly co-Hopfian). As a consequence we obtain a version of Hopkins–Levitzki theorem for strongly co-Hopfian rings. Namely, a strongly co-Hopfian ring is strongly Hopfian. Also we prove that for a commutative ring A, the polynomial ring A[X] is strongly Hopfian if and only if A is strongly Hopfian
Keywords :
Generalized Fitting , Hopfian , Strongly co-Hopfian , Strongly Hopfian , Fitting , Co-Hopfian
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
697904
Link To Document :
بازگشت