Title of article :
The Peirce decomposition for generalized Jordan triple systems of finite order
Author/Authors :
Issai Kantor، نويسنده , , Louis Rowen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Every tripotent e of a generalized Jordan triple system of order l uniquely defines a decomposition into the direct sum of l2+2l components. This decomposition generalizes the known Peirce decomposition of a Jordan triple system and of a generalized Jordan triple system of second order, and is the first step in determining the structure of a generalized Jordan triple system in terms of the tripotent.
Keywords :
Kantor triple , Peirce decomposition , graded Lie algebra , Idempotent , Tripotent , Jordan triple system
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra