Title of article :
Tilting modules over an algebra by Igusa, Smalø and Todorov
Author/Authors :
Jan ??ov??ek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
299
To page :
318
Abstract :
The finiteness of the little finitistic dimension of an artin algebra R is known to be equivalent to the existence of a tilting R-module T such that where is the category of all finitely presented R-modules of finite projective dimension. Moreover, T can be taken finitely generated if and only if is contravariantly finite. In this paper, we describe explicitly the structure of T for the IST-algebra, a finite-dimensional algebra with not contravariantly finite. We also characterize the indecomposable modules in , and all tilting classes over this algebra.
Keywords :
tilting modules , Representations of quivers , Cotorsion pairs
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698040
Link To Document :
بازگشت