Title of article
Ideals of cubic algebras and an invariant ring of the Weyl algebra
Author/Authors
Koen de Naeghel، نويسنده , , Nicolas Marconnet، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
54
From page
380
To page
433
Abstract
We classify reflexive graded right ideals, up to isomorphism and shift, of generic cubic three-dimensional Artin–Schelter regular algebras. We also determine the possible Hilbert functions of these ideals. These results are obtained by using similar methods as for quadratic Artin–Schelter algebras [K. De Naeghel, M. Van den Bergh, Ideal classes of three-dimensional Sklyanin algebras, J. Algebra 276 (2) (2004) 515–551; K. De Naeghel, M. Van den Bergh, Ideal classes of three dimensional Artin–Schelter regular algebras, J. Algebra 283 (1) (2005) 399–429]. In particular our results apply to the enveloping algebra of the Heisenberg–Lie algebra from which we deduce a classification of right ideals of the invariant ring of the first Weyl algebra A1=k x,y /(xy−yx−1) under the automorphism φ(x)=−x, φ(y)=−y.
Keywords
Weyl algebra , Enveloping algebra of the Heisenberg–Lie algebra , Quantum quadric , Ideals , Hilbert series
Journal title
Journal of Algebra
Serial Year
2007
Journal title
Journal of Algebra
Record number
698045
Link To Document