Title of article :
An elemental characterization of strong primeness in Lie algebras
Author/Authors :
Esther Garc?a، نويسنده , , Miguel G?mez Lozano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
10
From page :
132
To page :
141
Abstract :
In this paper we prove that a Lie algebra L is strongly prime if and only if [x,[y,L]]≠0 for every nonzero elements x,y L. As a consequence, we give an elementary proof, without the classification theorem of strongly prime Jordan algebras, of the fact that a linear Jordan algebra or Jordan pair T is strongly prime if and only if {x,T,y}≠0 for every x,y T. Moreover, we prove that the Jordan algebras at nonzero Jordan elements of strongly prime Lie algebras are strongly prime.
Keywords :
Lie algebras , Local inheritance of strong primeness , Characterization of strong primeness
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698074
Link To Document :
بازگشت