Title of article :
Bicrossproduct approach to the Connes–Moscovici Hopf algebra
Author/Authors :
Andrea T. Hadfield، نويسنده , , S. Majid، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
29
From page :
228
To page :
256
Abstract :
We give a rigorous proof that the (codimension one) Connes–Moscovici Hopf algebra is isomorphic to a bicrossproduct Hopf algebra linked to a group factorisation of the diffeomorphism group . We construct a second bicrossproduct UCM equipped with a nondegenerate dual pairing with . We give a natural quotient Hopf algebra kλ[Heis] of and Hopf subalgebra Uλ(heis) of UCM which again are in duality. All these Hopf algebras arise as deformations of commutative or cocommutative Hopf algebras that we describe in each case. Finally we develop the noncommutative differential geometry of kλ[Heis] by studying first order differential calculi of small dimension.
Keywords :
Noncommutative geometry , Heisenberg group , quantum groups , Group factorisation
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698081
Link To Document :
بازگشت