Title of article
Localising embeddings of comodule categories with applications to tame and Euler coalgebras
Author/Authors
Daniel Simson، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
40
From page
455
To page
494
Abstract
Given a K-coalgebra C and an injective left C-comodule E, we construct a coalgebra CE and fully faithful left exact embedding of comodule categories such that the image of □E is the subcategory C-ComodE consisting of the comodules M with an injective presentation 0→M→E0→E1, where E0 and E1 are direct sums of direct summands of the comodule E. The functor □E preserves the indecomposability, the injectivity, and is right adjoint to the restriction functor . Applications to the study of tame coalgebras, Betti numbers, and cosyzygy comodules of simple comodules over a left Euler coalgebra C are given. A localising reduction to countably dimensional Euler coalgebras is presented.
Keywords
Euler defect , Tame comodule type , Cartan matrix , Coalgebra , Comodule , Colocalisation , Bilinear form , Wild comodule type , Euler characteristic
Journal title
Journal of Algebra
Serial Year
2007
Journal title
Journal of Algebra
Record number
698093
Link To Document