Title of article :
Hilbert–Kunz functions for irreducible plane curves
Author/Authors :
Paul Monsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
326
To page :
345
Abstract :
Let C be a characteristic p irreducible projective plane curve defined by a degree d form f, and n→en(f) be the Hilbert–Kunz function of f. en=μp2n−Rn with and Rn=O(pn). When C is smooth, Rn=O(1); Brenner has shown the Rn to be eventually periodic when one further assumes C defined over a finite field. We generalize these results, dropping smoothness. An additional term, (periodic) pn now appears in Rn, with the periodic function taking values in . We describe it using 1-dimensional Hilbert–Kunz theory in the local rings of the singular points of C, together with sheaf theory on C, and work explicit examples.
Keywords :
Singular plane curves , vector bundles , Hilbert–Kunz
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698283
Link To Document :
بازگشت