Title of article :
Endoproperties of modules and local duality
Author/Authors :
Nguyen Viet Dung، نويسنده , , Jose Luis Garcia-Lapresta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Let R be any ring and N= i INi be a direct sum of finitely presented left R-modules Ni. Suppose that D(N) and D(Ni) are the local duals of N and Ni for each i I. We prove that the lattice of endosubmodules of N is anti-isomorphic to the lattices of matrix subgroups of D(N) and of M= i ID(Ni). As consequences, N is endoartinian if and only if M (or D(N)) is endonoetherian, and N is endonoetherian if and only if M (or D(N)) is Σ-pure-injective. We obtain, in particular, that if R is a Krull–Schmidt ring, and M is an indecomposable pure-injective endonoetherian right R-module which is the source of a left almost split morphism in Mod(R), then M is endofinite. As an application, a ring R is of finite representation type if and only if every pure-injective right R-module is endonoetherian.
Keywords :
Endonoetherian module , Endofinite module , Local duality , Ring of finite representation type , Pure semisimple ring
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra