Title of article :
Linear cellular automata over modules of finite length and stable finiteness of group rings
Author/Authors :
Tullio Ceccherini-Silberstein، نويسنده , , Michel Coornaert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
16
From page :
743
To page :
758
Abstract :
Let M be a left (or right) module of finite length over a ring R and let G be a sofic group. We show that every injective R-linear cellular automaton is surjective. As an application, we prove that group rings of sofic groups with coefficients in left (or right) Artinian rings are stably finite.
Keywords :
Direct finiteness , Stable finiteness , Linear cellular automaton , Sofic group , Noetherian module , Module of finite length , group ring , Artinian module
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698345
Link To Document :
بازگشت