Abstract :
We prove Leavitt path algebra versions of the two uniqueness theorems of graph C*-algebras. We use these uniqueness theorems to analyze the ideal structure of Leavitt path algebras and give necessary and sufficient conditions for their simplicity. We also use these results to give a proof of the fact that for any graph E the Leavitt path algebra embeds as a dense *-subalgebra of the graph C*-algebra C*(E). This embedding has consequences for graph C*-algebras, and we discuss how we obtain new information concerning the construction of C*(E).
Keywords :
C*-algebra , View the MathML source-graded ring , View the MathML source-graded algebra , Leavitt path algebra , Graph algebra , Ideal structure , Uniqueness theorems