Title of article :
Uppers to zero and semistar operations in polynomial rings
Author/Authors :
Gyu Whan Chang، نويسنده , , Marco Fontana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
10
From page :
484
To page :
493
Abstract :
Given a stable semistar operation of finite type on an integral domain D, we show that it is possible to define in a canonical way a stable semistar operation of finite type [ ] on the polynomial ring D[X], such that D is a -quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[ ]-maximal ideal. This result completes the investigation initiated by Houston–Malik–Mott [E. Houston, S. Malik, J. Mott, Characterizations of *-multiplication domains, Canad. Math. Bull. 27 (1984) 48–52, Section 2. [17]] in the star operation setting. Moreover, we show that D is a Prüfer -multiplication (respectively, a -Noetherian; a -Dedekind) domain if and only if D[X] is a Prüfer [ ]-multiplication (respectively, a [ ]-Noetherian; a [ ]-Dedekind) domain. As an application of the techniques introduced here, we obtain a new interpretation of the Gabriel–Popescu localizing systems of finite type on an integral domain D (Problem 45 of [S.T. Chapman, S. Glaz, One hundred problems in commutative ring theory, in: S.T. Chapman, S. Glaz (Eds.), Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2000, pp. 459–476. [4]]), in terms of multiplicatively closed sets of the polynomial ring D[X].
Keywords :
Quasi-Prüfer domain , Prüfer v-multiplication domain , UMT-domain , Upper to zero , Star and semistar operation , Gabriel–Popescu localizing system
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698377
Link To Document :
بازگشت