Abstract :
Let D be an integrally closed domain, * a star-operation on D, X an indeterminate over D, and N*={f D[X](Af)*=D}. For an e.a.b. star-operation *1 on D, let Kr(D,*1) be the Kronecker function ring of D with respect to *1. In this paper, we use * to define a new e.a.b. star-operation *c on D. Then we prove that D is a Prüfer *-multiplication domain if and only if D[X]N*=Kr(D,*c), if and only if Kr(D,*c) is a quotient ring of D[X], if and only if Kr(D,*c) is a flat D[X]-module, if and only if each *-linked overring of D is a Prüfer v-multiplication domain. This is a generalization of the following well-known fact that if D is a v-domain, then D is a Prüfer v-multiplication domain if and only if Kr(D,v)=D[X]Nv, if and only if Kr(D,v) is a quotient ring of D[X], if and only if Kr(D,v) is a flat D[X]-module.
Keywords :
(e.a.b.) *-operation , Prüfer *-multiplication domain , Kronecker function ring , Nagata ring