• Title of article

    Affine surfaces with trivial Makar-Limanov invariant

  • Author/Authors

    Daniel Daigle، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    12
  • From page
    3100
  • To page
    3111
  • Abstract
    We study the class of 2-dimensional affine k-domains R satisfying ML(R)=k, where k is an arbitrary field of characteristic zero. In particular, we obtain the following result: Let R be a localization of a polynomial ring in finitely many variables over a field of characteristic zero. If ML(R)=K for some field K R such that trdegKR=2, then R is K-isomorphic to K[X,Y,Z]/(XY−P(Z)) for some nonconstant P(Z) K[Z].
  • Keywords
    Locally nilpotent derivations , group actions , Danielewski surfaces , Affine surfaces , Makar-Limanov invariant , Absolute constants
  • Journal title
    Journal of Algebra
  • Serial Year
    2008
  • Journal title
    Journal of Algebra
  • Record number

    698563