Title of article :
Buchsbaum–Rim multiplicities as Hilbert–Samuel multiplicities
Author/Authors :
C-Y. Jean Chan، نويسنده , , Jung-Chen Liu، نويسنده , , Bernd Ulrich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We study the Buchsbaum–Rim multiplicity br(M) of a finitely generated module M over a regular local ring R of dimension 2 with maximal ideal . The module M under consideration is of finite colength in a free R-module F. Write F/M I/J, where J I are -primary ideals of R. We first investigate the colength of any -primary ideal and its Hilbert–Samuel multiplicity using linkage theory. As an application, we establish several multiplicity formulas that express the Buchsbaum–Rim multiplicity of the module M in terms of the Hilbert–Samuel multiplicities of ideals related to I, J and a minimal reduction of M. The motivation comes from work by E. Jones, who applied graphical computations of the Hilbert–Samuel multiplicity to the Buchsbaum–Rim multiplicity [E. Jones, Computations of Buchsbaum–Rim multiplicities, J. Pure Appl. Algebra 162 (2001) 37–52].
Keywords :
Hilbert–Samuel multiplicity , Buchsbaum–Rim multiplicity , linkage , Reduction of ideals and modules
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra