Title of article :
A constructive comparison of the rings R(X) and R X and application to the Lequain–Simis Induction Theorem
Author/Authors :
Afef Ellouz، نويسنده , , Henri Lombardi ، نويسنده , , Ihsen Yengui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
521
To page :
533
Abstract :
We constructively prove that for any ring R with Krull dimension d, the ring R X locally behaves like the ring R(X) or a localization of a polynomial ring of type (S−1R)[X] with S a multiplicative subset of R such that the Krull dimension of S−1R is d−1. As an application, we give a simple and constructive proof of the Lequain–Simis Induction Theorem which is an important variation of the Quillen Induction Theorem.
Keywords :
Constructive mathematics , Lequain–Simis Induction Theorem , Quillen–Suslin theorem , Local–global principles , Prüfer domains , Arithmetical rings , Finitely generated projective modules
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698686
Link To Document :
بازگشت