Title of article :
New identities in dendriform algebras
Author/Authors :
Kurusch Ebrahimi-Fard، نويسنده , , Dominique Manchon، نويسنده , , Frederic Patras and Christophe Reutenauer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
20
From page :
708
To page :
727
Abstract :
Dendriform structures arise naturally in algebraic combinatorics (where they allow, for example, the splitting of the shuffle product into two pieces) and through Rota–Baxter algebra structures (the latter appear, among others, in differential systems and in the renormalization process of pQFT). We prove new combinatorial identities in dendriform algebras that appear to be strongly related to classical phenomena, such as the combinatorics of Lyndon words, rewriting rules in Lie algebras, or the fine structure of the Malvenuto–Reutenauer algebra. One of these identities is an abstract noncommutative, dendriform, generalization of the Bohnenblust–Spitzer identity and of an identity involving iterated Chen integrals due to C.S. Lam.
Keywords :
Malventuo–Reutenauer algebra , Descent algebra , Free Lie algebra , Magnus expansion , Lyndon words , Bohnenblust–Spitzer identity , Dendriform algebra , Rota–Baxter algebra , Hopf algebra , Pre-Lie algebra
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698694
Link To Document :
بازگشت