• Title of article

    Schur–Weyl duality for infinitesimal q-Schur algebras sq(2,r)1

  • Author/Authors

    Karin Erdmann، نويسنده , , Qiang Fu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    16
  • From page
    1099
  • To page
    1114
  • Abstract
    Using the result of [S.R. Doty, D.K. Nakano, K.M. Peters, Polynomial representations of Frobenius kernels of GL2, in: Contemp. Math., vol. 194, 1996, pp. 57–67; S. König, C. Xi, When is a cellular algebra quasi-hereditary? Math. Ann. 315 (1999) 281–293], we prove that a non-semisimple infinitesimal Schur algebra s(2,r)1 is not cellular. Furthermore, we determine the structure of the endomorphism ring of tensor space as a module for the infinitesimal Schur algebra s(2,r)1, up to Morita equivalence. Both results generalize to the quantum case.
  • Keywords
    Tilting modules , Cellular structure , Chebyshev polynomials , Schur–Weyl duality , Infinitesimal q-Schur algebras
  • Journal title
    Journal of Algebra
  • Serial Year
    2008
  • Journal title
    Journal of Algebra
  • Record number

    698710