Title of article :
Proper identities, Lie identities and exponential codimension growth
Author/Authors :
Antonio Giambruno، نويسنده , , Mikhail Zaicev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The exponent exp(A) of a PI-algebra A in characteristic zero is an integer and measures the exponential rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243]. In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to the Grassmann algebra. We also prove that the Lie exponent exists for any finitely generated PI-algebra. The value of both exponents is always equal to exp(A) or exp(A)−1.
Keywords :
Polynomial identities , Codimension growth
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra