Title of article :
A new perspective on the Frenkel–Zhu fusion rule theorem
Author/Authors :
Alex J. Feingold، نويسنده , , Stefan Fredenhagen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
22
From page :
2079
To page :
2100
Abstract :
In this paper we prove a formula for fusion coefficients of affine Kac–Moody algebras first conjectured by Walton [M.A. Walton, Tensor products and fusion rules, Canad. J. Phys. 72 (1994) 527–536], and rediscovered by Feingold [A. Feingold, Fusion rules for affine Kac–Moody algebras, in: N. Sthanumoorthy, Kailash Misra (Eds.), Kac–Moody Lie Algebras and Related Topics, Ramanujan International Symposium on Kac–Moody Algebras and Applications, Jan. 28–31, 2002, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India, in: Contemp. Math., vol. 343, American Mathematical Society, Providence, RI, 2004, pp. 53–96]. It is a reformulation of the Frenkel–Zhu affine fusion rule theorem [I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992) 123–168], written so that it can be seen as a beautiful generalization of the classical Parthasarathy–Ranga Rao–Varadarajan tensor product theorem [K.R. Parthasarathy, R. Ranga Rao, V.S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967) 383–429].
Keywords :
Fusion rules , Affine Kac–Moody algebras
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698757
Link To Document :
بازگشت