Title of article :
Perfect generalized characters inducing the Alperin–McKay conjecture
Author/Authors :
Charles W. Eaton، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
27
From page :
2301
To page :
2327
Abstract :
It is well known that the perfect isometries predicted in Brouéʹs conjecture do not always exist when the defect groups are non-abelian, even when the blocks have equivalent Brauer categories. We consider perfect generalized characters which induce bijections between the sets of irreducible characters of height zero of a block and of its Brauer correspondent in the normalizer of a defect group, hence providing in these cases an ‘explanation’ for the numerical coincidence predicted in the Alperin–McKay conjecture. In this way the perfect isometries predicted in Brouéʹs conjecture for blocks with abelian defect groups are generalized. Whilst such generalized characters do not exist in general, we show that they do exist when the defect groups are non-abelian trivial intersection subgroups of order p3, as well as for for q a power of two and PSU3(q) for all q. Further, we show that these blocks satisfy a generalized version of an isotypy.
Keywords :
Modular representation theory , characters of finite groups
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698768
Link To Document :
بازگشت