Title of article
Associated primes of local cohomology modules and Matlis duality
Author/Authors
Kamal Bahmanpour، نويسنده , , Reza Naghipour، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
10
From page
2632
To page
2641
Abstract
Let be a commutative Noetherian local ring of dimension d and I an ideal of R. We show that the set of associated primes of the local cohomology module is finite whenever R is regular. Also, it is shown that if x1,…,xd is a system of parameters for R, then has infinitely many associated prime ideals for all i d−1, where D(−):=HomR(−,E) denotes the Matlis dual functor and is the injective hull of the residue field . Finally, we explore a counterexample of Grothendieckʹs conjecture by showing that, if d 3, then the R-module is not finitely generated, where I=(x1)∩(x2,…,xd).
Keywords
local cohomology , Matlis duality , regular local ring , Associated primes , Cofinite module , Cohomological dimension
Journal title
Journal of Algebra
Serial Year
2008
Journal title
Journal of Algebra
Record number
698788
Link To Document