• Title of article

    Associated primes of local cohomology modules and Matlis duality

  • Author/Authors

    Kamal Bahmanpour، نويسنده , , Reza Naghipour، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    10
  • From page
    2632
  • To page
    2641
  • Abstract
    Let be a commutative Noetherian local ring of dimension d and I an ideal of R. We show that the set of associated primes of the local cohomology module is finite whenever R is regular. Also, it is shown that if x1,…,xd is a system of parameters for R, then has infinitely many associated prime ideals for all i d−1, where D(−):=HomR(−,E) denotes the Matlis dual functor and is the injective hull of the residue field . Finally, we explore a counterexample of Grothendieckʹs conjecture by showing that, if d 3, then the R-module is not finitely generated, where I=(x1)∩(x2,…,xd).
  • Keywords
    local cohomology , Matlis duality , regular local ring , Associated primes , Cofinite module , Cohomological dimension
  • Journal title
    Journal of Algebra
  • Serial Year
    2008
  • Journal title
    Journal of Algebra
  • Record number

    698788