Title of article :
Detecting infinitely many semisimple representations in a fixed finite dimension
Author/Authors :
E.S. Letzter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
3926
To page :
3934
Abstract :
Let n be a positive integer, and let k be a field (of arbitrary characteristic) accessible to symbolic computation. We describe an algorithmic test for determining whether or not a finitely presented k-algebra R has infinitely many equivalence classes of semisimple representations R→Mn(k′), where k′ is the algebraic closure of k. The test reduces the problem to computational commutative algebra over k, via famous results of Artin, Procesi, and Shirshov. The test is illustrated by explicit examples, with n=3.
Keywords :
Trace rings , Finitely presented algebras , Computational commutative algebra , Algorithmic methods , Semisimple representations
Journal title :
Journal of Algebra
Serial Year :
2008
Journal title :
Journal of Algebra
Record number :
698863
Link To Document :
بازگشت