Title of article
An Analysis Using the Zaks-Skula Constant of Element Factorizations in Dedekind Domains Original Research Article
Author/Authors
Chapman S. T.، نويسنده , , Smith W. W.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1993
Pages
15
From page
176
To page
190
Abstract
Let D be a Dedekind domain with finite class group G. Let α be a nonzero nonunit of D and suppose β1, ..., βs, γ1, ..., γt are irreducibles of D such that α = β1 ··· βs = γ1 ··· γt. Two recent papers (J. Steffan, 1986, J. Algebra102, 229-236; R. J. Valenza, 1990, J. Number Theory38, 212-218) have studied the quotient s/t and both conclude that given D there exists a smallest real number ρ(D) such that s/t ≤ ρ(D). While it is easy to show that ρ(D) ≤ G/2, we use the Zaks-Skula constant to find a sharper upper bound on ρ(D). We then use this upper bound to explore the behavior of the Φ-function, which counts the number of different lengths of certain products, on two specific classes of Dedekind domains.
Journal title
Journal of Algebra
Serial Year
1993
Journal title
Journal of Algebra
Record number
699030
Link To Document