Title of article :
On Towers and Composita of Towers of Function Fields over Finite Fields
Author/Authors :
Arnaldo Garcia، نويسنده , , Henning Stichtenoth، نويسنده , , Michael Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
18
From page :
257
To page :
274
Abstract :
For a towerF1 F2 ••• of algebraic function fieldsFi/ q, define λ = limi→∞N(Fi)/g(Fi), whereN(Fi) is the number of rational places andg(Fi) is the genus ofFi/ q. The tower is said to be asymptotically good if λ > 0. We give a very simple explicit example of an asymptotically good tower for all non-prime fields q. In this example, all stepsFi+1/Fiare tamely ramified Kummer extensions. We then show that any function fieldF/ qhaving at least one rational place can be embedded into an asymptotically good tower, and we study the behaviour of λ in the compositum of a towerF1 F2 ••• with an extensionE/F1.
Journal title :
Finite Fields and Their Applications
Serial Year :
1997
Journal title :
Finite Fields and Their Applications
Record number :
700899
Link To Document :
بازگشت