Title of article :
Permutation Polynomials Modulo 2w
Author/Authors :
Ronald L. Rivest.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
6
From page :
287
To page :
292
Abstract :
We give an exact characterization of permutation polynomials modulo n=2w, w≥2: a polynomial P(x)=a0+a1x +•••+adxd with integral coefficients is a permutation polynomial modulo n if and only if a1 is odd, (a2+a4+a6+•••) is even, and (a3+a5+a7+•••) is even. We also characterize polynomials defining latin squares modulo n=2w, but prove that polynomial multipermutations (that is, a pair of polynomials defining a pair of orthogonal latin squares) modulo n=2wdo not exist.
Journal title :
Finite Fields and Their Applications
Serial Year :
2001
Journal title :
Finite Fields and Their Applications
Record number :
701010
Link To Document :
بازگشت