Title of article :
On the sum of two primitive elements of maximal subfields of a finite field
Author/Authors :
B. V. Petrenko، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
15
From page :
102
To page :
116
Abstract :
Let denote a finite field with r elements. Let q be a power of a prime, and p1,p2, p3 be distinct primes. Put y1=p1p2, y2=p1p3, y3=p2p3, y=p1p2p3, We express the number of elements in A in terms of q, p1, p2, p3 and give several applications to counting points in algebraic sets.
Keywords :
Finite field , Galois group , Linear disjointness , Primitive element , Probability , Algebraic set , Defining element , Cyclic field extension , Jacobi sum , Abelian field extension , Fieldcompositum
Journal title :
Finite Fields and Their Applications
Serial Year :
2003
Journal title :
Finite Fields and Their Applications
Record number :
701078
Link To Document :
بازگشت