Title of article :
Automorphism groups of certain simple 2-(q,3,λ) designs constructed from finite fields
Author/Authors :
K. I. Beidar، نويسنده , , W. -F. Ke، نويسنده , , C. -T. Liu، نويسنده , , W. -C. Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
13
From page :
400
To page :
412
Abstract :
Let F be a finite field of characteristic not 2, and S F a subset with three elements. Consider the collection S={S•a+b a,b F, a≠0}.Then (F,S) is a simple 2-design and the parameter λ of (F,S) is 1, 2, 3 or 6. We find in this paper the full automorphism group of (F,S). Namely, if we put U={r {0,1,r} S} and K the subfield of F generated by U, then the automorphisms of (F,S) are the maps of the form x g(α(x))+b, x F, where b F, α : F→F is a field automorphism fixing U, and g is a linear transformation of F considered as a vector space over K.
Journal title :
Finite Fields and Their Applications
Serial Year :
2003
Journal title :
Finite Fields and Their Applications
Record number :
701103
Link To Document :
بازگشت