Title of article :
Minimal cyclic codes of length pnq
Author/Authors :
Gurmeet K. Bakshi، نويسنده , , Madhu Raka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Explicit expressions for all the 3n+2 primitive idempotents in the ring Rpnq=GF(ℓ)[x]/(xpnq−1), where p,q,ℓ are distinct odd primes, ℓ is a primitive root modulo pn and q both, , are obtained. The dimension, generating polynomials and the minimum distance of the minimal cyclic codes of length pnq over GF(ℓ) are also discussed.
Keywords :
Primitive idempotents , primitive roots , Minimal cyclic codes and cyclotomic cosets
Journal title :
Finite Fields and Their Applications
Journal title :
Finite Fields and Their Applications