Title of article :
Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn−1)
Author/Authors :
Anuradha Sharma، نويسنده , , Gurmeet K. Bakshi، نويسنده , , V. C. Dumir، نويسنده , , Madhu Raka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Let q be an odd prime power and p be an odd prime with gcd(p,q)=1. Let order of q modulo p be f, and qf=1+pλ. Here expressions for all the primitive idempotents in the ring Rpn=GF(q)[x]/(xpn−1), for any positive integer n, are obtained in terms of cyclotomic numbers, provided p does not divide λ if n 2. The dimension, generating polynomials and minimum distances of minimal cyclic codes of length pn over GF(q) are also discussed.
Keywords :
Periods , Cyclotomic cosets , Idempotents , cyclic codes
Journal title :
Finite Fields and Their Applications
Journal title :
Finite Fields and Their Applications