Title of article :
Counting nilpotent endomorphisms
Author/Authors :
M.C. Crabb، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
4
From page :
151
To page :
154
Abstract :
A variant of Prüferʹs classical proof of Cayleyʹs theorem on the enumeration of labelled trees counts the nilpotent self-maps of a pointed finite set. Essentially, the same argument can be used to establish the result of Fine and Herstein [Illinois J. Math. 2 (1958) 499–504] that the number of nilpotent n×n matrices over the finite field is qn(n-1).
Keywords :
Prüfer code , Nilpotent matrix
Journal title :
Finite Fields and Their Applications
Serial Year :
2006
Journal title :
Finite Fields and Their Applications
Record number :
701203
Link To Document :
بازگشت