Title of article :
On strong orthogonal systems and weak permutation polynomials over finite commutative rings
Author/Authors :
Qijiao Wei، نويسنده , , Qifan Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
113
To page :
120
Abstract :
We study two kinds of orthogonal systems of polynomials over finite commutative rings and get two fundamental results. Firstly, we obtain a necessary and sufficient condition for a system of polynomials (over a fixed finite commutative ring R) to form a strong orthogonal system. Secondly, for a pair (R,n) of a finite local ring R and an integer n>1, we get an easy criterion to check whether every weak permutation polynomial in n variables over R is strong.
Keywords :
Finite local ring , Orthogonal system , Permutation polynomial , Finite field
Journal title :
Finite Fields and Their Applications
Serial Year :
2007
Journal title :
Finite Fields and Their Applications
Record number :
701237
Link To Document :
بازگشت