Title of article :
Inhomogeneous Diophantine approximation over the field of formal Laurent series
Author/Authors :
Chao Ma، نويسنده , , Huikun Jiang and Weiyi Su، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
18
From page :
361
To page :
378
Abstract :
De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mém. 21 (1970)] proved that Khintchineʹs theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen [S. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255–268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchineʹs theorem and Jarnik–Besicovitch theorem are proved.
Keywords :
finite field , Inhomogeneous Diophantine approximation , Exceptional sets , Hausdorffdimension , Metric theory
Journal title :
Finite Fields and Their Applications
Serial Year :
2008
Journal title :
Finite Fields and Their Applications
Record number :
701334
Link To Document :
بازگشت