• Title of article

    Inhomogeneous Diophantine approximation over the field of formal Laurent series

  • Author/Authors

    Chao Ma، نويسنده , , Huikun Jiang and Weiyi Su، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    18
  • From page
    361
  • To page
    378
  • Abstract
    De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mém. 21 (1970)] proved that Khintchineʹs theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen [S. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255–268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchineʹs theorem and Jarnik–Besicovitch theorem are proved.
  • Keywords
    finite field , Inhomogeneous Diophantine approximation , Exceptional sets , Hausdorffdimension , Metric theory
  • Journal title
    Finite Fields and Their Applications
  • Serial Year
    2008
  • Journal title
    Finite Fields and Their Applications
  • Record number

    701334