Title of article :
Modules without Self-Extensions over Radical Cube Zero Rings Original Research Article
Author/Authors :
Schulz R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
4
From page :
100
To page :
103
Abstract :
A conjecture of Tachikawa states that every finitely generated non-projective module M over a self-injective artinian ring R has a self-extension, i.e., ExtiR(M, M) ≠ 0 for some i ≥ 1. We show that Tachikawa′s conjecture holds for a class of radical cube zero rings.
Journal title :
Journal of Algebra
Serial Year :
1994
Journal title :
Journal of Algebra
Record number :
701817
Link To Document :
بازگشت