Title of article :
Nonmatrix Varieties and Nil-Generated Algebras Whose Units Satisfy a Group Identity Original Research Article
Author/Authors :
Yuly Billig، نويسنده , , David Riley، نويسنده , , Vladimir Tasiimage، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
12
From page :
241
To page :
252
Abstract :
LetR×denote the group of units of an associative algebraRover an infinite fieldF. We prove that ifRis unitarily generated by its nilpotent elements, thenR×satisfies a group identity precisely whenRsatisfies a nonmatrix polynomial identity. As an application, we examine the group algebraFGof a torsion groupGand the restricted enveloping algebrau(L) of ap-nil restricted Lie algebraL. Giambruno, Sehgal, and Valenti recently proved that if the group of units (FG)×satisfies a group identity, thenFGsatisfies a polynomial identity, thus confirming a conjecture of Brian Hartley. We show that, in fact, (FG)×satisfies a group identity if and only ifFGsatisfies a nonmatrix polynomial identity. In the case of restricted enveloping algebras, we prove thatu(L)×satisfies a group identity if and only ifu(L) satisfies the Engel condition.
Journal title :
Journal of Algebra
Serial Year :
1997
Journal title :
Journal of Algebra
Record number :
702911
Link To Document :
بازگشت