Title of article
Diffusion on locally compact ultrametric spaces
Author/Authors
Mauro Del Muto، نويسنده , , Alessandro Figà-Talamanca، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
15
From page
197
To page
211
Abstract
We consider an ultrametric space with sufficiently many isometries and we construct a class of diffusion processes on the space as appropriate limits of discrete processes on the (open and closed) balls of the space. We show, using a version of the Lévy Khintchine formula adapted to this general context, that our construction includes all convolution semigroups associated to an unbounded Lévy measure. Finally we relate our construction to the construction of diffusion processes due to S. Albeverio and W. Karwowski on p-adic fields.
Keywords
ultrametric space , tree , nearest-neighbor , Local field , Diffusion process , random walk
Journal title
Expositiones Mathematicae
Serial Year
2004
Journal title
Expositiones Mathematicae
Record number
703308
Link To Document