Title of article :
Diffusion on locally compact ultrametric spaces
Author/Authors :
Mauro Del Muto، نويسنده , , Alessandro Figà-Talamanca، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
We consider an ultrametric space with sufficiently many isometries and we construct a class of diffusion processes on the space as appropriate limits of discrete processes on the (open and closed) balls of the space. We show, using a version of the Lévy Khintchine formula adapted to this general context, that our construction includes all convolution semigroups associated to an unbounded Lévy measure. Finally we relate our construction to the construction of diffusion processes due to S. Albeverio and W. Karwowski on p-adic fields.
Keywords :
ultrametric space , tree , nearest-neighbor , Local field , Diffusion process , random walk
Journal title :
Expositiones Mathematicae
Journal title :
Expositiones Mathematicae