Title of article :
Issues related to low resolution modeling of soil moisture: experience with the PLACE model
Author/Authors :
Aaron Boone، نويسنده , , Peter J. Wetzel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
21
From page :
161
To page :
181
Abstract :
This study documents the new PLACE soil hydrology model, and examines the effects of various parameterization schemes on the solution of the Richards equation. Richards equation is the basis upon which many of the land surface schemes participating in the PILPS experiments model soil water transport. Generally, the integration is carried out using a coarse model grid, which makes the solution more sensitive to particulars of the parameterization scheme. Parameterization schemes for the lower boundary condition, lateral interflow, and for moisture fluxes between model layers are tested in PLACE using both high and low resolution grids. Simulations were made using PILPS-HAPEX forcing data and soil and vegetation parameters. The soil hydrology model is validated against the annual observed HAPEX soil moisture profiles. The predicted evapotranspiration is also compared to a value computed from the PILPS-HAPEX forcing data using the Penman-Monteith equation. When testing a low-resolution soil grid typical of land surface schemes, predicted soil moisture was found to be highly sensitive to the interpolation method for computing vertical moisture fluxes between model layers. A new interpolation method for low resolution models is proposed and tested. It reproduces the high resolution model results more faithfully, over the entire range of soil moisture, than two methods commonly applied in the literature. Further tests demonstrate that by varying the parameterizations for lower boundary condition and the treatment of lateral flow (collectively called drainage), the predicted total annual evapotranspiration may range between 74% and 97% of the incident precipitation in this case. Both of these parameterizations involve one free parameter, and both are largely unconstrained by the available observations. Good overall agreement between the PLACE predicted and HAPEX observed soil moisture profiles was attained by varying these two PLACE drainage parameters over their respective ranges for a series of model simulations. Root-mean square error tests were then used to determine the set of parameters which corresponded to the best predicted soil moisture profile. However, the best predicted soil moisture profiles do not correspond with the best predicted evapotranspiration. This inconsistency occurs not only for PLACE, but, to varying degrees, for all of the land-surface schemes participating in PILPS-HAPEX.
Journal title :
Global and Planetary Change
Serial Year :
1996
Journal title :
Global and Planetary Change
Record number :
704203
Link To Document :
بازگشت