Title of article :
Sedimentary effects on the expansion of a Himalayan supraglacial lake
Author/Authors :
Kazuhisa Chikita، نويسنده , , Jageshwar Jha، نويسنده , , Tomomi Yamada، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
Supraglacial Tsho Rolpa Lake in the Nepal Himalaya has been increasing rapidly in size since the 1950s, corresponding to the mountain-glacier shrinkage after the Little Ice Age. The lake basin expansion results from the subsidence by dead-ice melt below the bottom of the lake, and the retreat of the glacier terminus. Field observations of Tsho Rolpa in 1996 revealed that the retreat of glacier terminus is connected to a wind-induced vertical circulation of surface water heated by solar radiation. In order to clarify the mechanism of the lake expansion associated with sedimentary processes, we measured bottom sedimentation rate with some sediment traps, and vertical suspended sediment concentration (SSC) and water temperature, and analyzed the grain size of suspended and trapped sediments. The sediments, mostly composed of clay-sized grains, are dominantly supplied by glacier-melt water inflow at the glacier terminus. Sedimentary processes of such fine sediment comprise: (1) suspended-sediment fallout from intrusion of horizontal currents; (2) sediment sorting by sediment-laden underflows; and (3) the debris supply from the ice collapse at the glacier terminus. The (1) and (2) processes produce the density stratification of the lake, accompanied by a pycnocline at a depth of about 27 m. The existence of the pycnocline builds up the vertical water circulation in the surface layer to enhance the glacier-melt at the terminus. With respect to the subsidence of the lake bottom, nearly molecular thermal diffusion is probably dominant near the bottom of the deepest point, which results from the kinetic-energy dissipation of sediment-laden underflows. The stable existence of the bottom turbid water throughout the year could cause continuous dead-ice melt below the lake bottom.
Keywords :
sediment-laden underflow , sedimentation rate , supraglacial lake , sediment fallout , grain size statistics
Journal title :
Global and Planetary Change
Journal title :
Global and Planetary Change