Title of article :
THE MINIMUM INDEX OF A NON-CONGRUENCE SUBGROUP OF SL2 OVER AN ARITHMETIC DOMAIN. II: THE RANK ZERO CASES
Author/Authors :
A. W. MASON and ANDREAS SCHWEIZER، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
16
From page :
53
To page :
68
Abstract :
Let K be a function field of genus g with a finite constant field Fq . Choose a place ∞ of K of degree δ and let C be the arithmetic Dedekind domain consisting of all elements of K that are integral outside ∞. An explicit formula is given (in terms of q, g and δ) for the minimum index of a non-congruence subgroup in SL2(C). It turns out that this index is always equal to the minimum index of an arbitrary proper subgroup in SL2(C). The minimum index of a normal non-congruence subgroup is also determined.
Journal title :
journal of the london mathematical society
Serial Year :
2005
Journal title :
journal of the london mathematical society
Record number :
708266
Link To Document :
بازگشت