Abstract :
Certain meromorphic matrix valued functions on C⧹R, the so-called boundary coefficients, are characterized in terms of a standard symmetric operator S in a Pontryagin space with finite (not necessarily equal) defect numbers, a meromorphic mapping into the defect subspaces of S, and a boundary mapping for S. Under some simple assumptions the boundary coefficients also satisfy a minimality condition. It is shown that these assumptions hold if and only if for S a generalized von Neumann equality is valid.