Abstract :
Parametrices of elliptic boundary value problems for differential operators belong to an algebra of pseudodifferential operators with the transmission property at the boundary. However, generically, smooth symbols on a manifold with boundary do not have this property, and several interesting applications require a corresponding more general calculus. We introduce here a new algebra of boundary value problems that contains Shapiro–Lopatinskij elliptic as well as global projection conditions; the latter ones are necessary, if an analogue of the Atiyah–Bott obstruction does not vanish. We show that every elliptic operator admits (up to a stabilisation) elliptic conditions of that kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces. Moreover, we construct parametrices in the calculus.