Abstract :
Let Mp,q denote the modulation space with parameters p,q∈[1,∞]. If 1/p1+1/p2=1+1/p0 and 1/q1+1/q2=1/q0, then it is proved that Mp1,q1∗Mp2,q2⊂Mp0,q0. The result is used to get inclusions between modulation spaces, Besov spaces and Schatten classes in calculus of Ψdo (pseudo-differential operators), and to extend the definition of Toeplitz operators. We also discuss continuity of ambiguity functions and Ψdo in the framework of modulation spaces.