Title of article :
Estimation of non-parametric regression for dasometric measures
Author/Authors :
E. Ayuga Téllez، نويسنده , , A.J. Mart?n Fern?ndez، نويسنده , , C. Gonz?lez Garc?a & E. Mart?nez Falero، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
18
From page :
819
To page :
836
Abstract :
The aim of this paper is to describe a simulation procedure to compare parametric regression against a non-parametric regression method, for different functions and sets of information. The proposed methodology improves lack of fit at the edges of the regression curves, and an acceptable result is obtained for the no-parametric estimation in all studied cases. Larger differences appear at the edges of the estimation. The results are applied to the study of dasometric variables, which do not fulfil the normality hypothesis needed for parametric estimation. The kernel regression shows the relationship between the studied variables, which would not be detected with more rigid parametric models.
Keywords :
Regression kernel , Edge effect , simulation , COMPARISON , dasometric variables
Journal title :
JOURNAL OF APPLIED STATISTICS
Serial Year :
2006
Journal title :
JOURNAL OF APPLIED STATISTICS
Record number :
712076
Link To Document :
بازگشت