Title of article :
Nonparametric bootstrapping for hierarchical data
Author/Authors :
Shiquan Ren، نويسنده , , Hong Lai، نويسنده , , Wenjing Tong، نويسنده , , Mostafa Aminzadeh، نويسنده , , Xuezhang Hou & Shenghan Lai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
1487
To page :
1498
Abstract :
Nonparametric bootstrapping for hierarchical data is relatively underdeveloped and not straightforward: certainly it does not make sense to use simple nonparametric resampling, which treats all observations as independent.We have provided some resampling strategies of hierarchical data, proved that the strategy of nonparametric bootstrapping on the highest level (randomly sampling all other levels without replacement within the highest level selected by randomly sampling the highest levels with replacement) is better than that on lower levels, analyzed real data and performed simulation studies
Keywords :
Random effects model , Hierarchical data , nonparametric bootstrapping , Resampling schemes , unbalanced data
Journal title :
JOURNAL OF APPLIED STATISTICS
Serial Year :
2010
Journal title :
JOURNAL OF APPLIED STATISTICS
Record number :
712473
Link To Document :
بازگشت